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57 ABSTRACT

Generation of a dependency graph for code that includes code
portions such as resources or functions or both. For some or
all of the nodes, the dependency is calculated by determining
that the given node, a depending node, depends on an affect-
ing node. The dependency is recorded so as to be associated
with the node. Furthermore, the dependency calculation
method is recorded so as to be associated with the depen-
dency. The code may perhaps include portions within two
different domains, in which the mechanism for calculating
dependencies may differ. In some cases, the dependency
graph may be constructed in stages, and perhaps additional
properties may be associated with the node, and metadata of
the properties may also be recorded.

24 Claims, 12 Drawing Sheets
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NEwOBJ(v: V,h: H, f: H) object instantiation
ASSIGN(v1 : V,wg 1 V) variable assignment
LoaD(vy : Vivg : Vip: P) property load
STORE(vy : V,p: P,va : V) property store

FORMALARG(f : H,z: Z,v: V)  formal argument

FORMALRET(f : H,v: V) formal return

ACTUALARG(c: C,z: Z,v: V) actual argument
(c
(c

ACTUALRET(c: Cyv : V) actual return

:C,f: H) indicates that f may be
invoked by a call site ¢

CALLGRAPH

PoiNnTsTO(v : V,h: H) indicates that v may point
to h

HeEapPTSTO(h1 : H,p: P,ho : H) indicates that hi’s p prop-
erty may point to ho

PROTOTYPE(h; : H,he : H) indicates that h; may
have ho in its internal pro-
totype chain

Figure 10
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INFERENCE(constraints, facts, isFull)

1
2
3
4
5
6

relations = SOLVE-CONSTRAINTS(constraints, facts)
repeat

newlacts = MAKE-SYMBOLS(relations, isFull)
facts = facts U newFacts
relations = SOLVE-CONSTRAINTS(constraints, facts)

until newfacts ==

MAKE-SYMBOLS(relations, isFull)

O~ Ok W+

facts = )
for (h,p) € relations. DEADLOAD : H X F’
if —SymBoric(h) or isFull
facts y =new HeapP1sTo(h, f,new H)
for (f,i) € relations. DEADARGUMENT : H X Z
v = FORMALARG[f, 1]
facts y =new PoiNTsTo(v,new H)
for (c,v) € relations. DEADRETURN : C'XV
facts y =new PoiNTsTo(v,new H)
/ Unification:
for h € relations. DEADPROTOTYPE : H
facts b =new ProTOTYPE(h, new H)
for (hi, ho) € relations. UniryPrOTO : HXH
facts y =new ProTOTYPE(h1, h2)
for (hi, ho) € relations. UniryOBiecT : H x I
for (hs,p, h1) € relations. HearP1sTo : Hx PxH
facts y =new HeaPPTSsTo(hs, p, h2)
return facts

Figure 12
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CODE DEPENDENCY CALCULATION

BACKGROUND

Computing technology has transformed the way we work,
play, and communicate. The functionality of computing sys-
tems is defined by the software code that they execute. Some
code is quite straightforward. However, some code may be
enormously complex, requiring large teams of skilled pro-
grammers in order to generate. In order to author complex
code, it is helpful to partition the code into smaller pieces by
defining simpler tasks for those smaller pieces, and allowing
those pieces to interact. This is the purpose of object-oriented
programming.

Accordingly, the program is written such that one code
portion may have dependencies on another code portion. For
instance, the second code portion may rely on input from the
first code portion, or may be initiated only by a call from the
first code portion. The first code portion may also be a
resource, such as a file, that is required by the second code
portion in order to execute. Thus, there may be dependencies
at the file level also.

When evaluating the overall functioning and operation of a
program, is it helpful to be able to view dependencies of the
various code portions. Accordingly, there are existing mecha-
nisms for constructing a dependency graph, modeling the
code portions as nodes in the graph, and with the edges in the
graph representing dependencies.

BRIEF SUMMARY

At least one embodiment described herein relates to the
computer-assisted generation of a dependency graph for code
that includes code portions. For instance, the code portions
may include resources, such as files, functions, or combina-
tions thereof. Each node in the dependency graph corre-
sponds to a code portion of the code. For a given node, the
dependency is calculated by determining that the given node,
a depending node, depends on an affecting node. The depen-
dency is recorded so as to be associated with the node. Fur-
thermore, the dependency calculation method is recorded so
as to be associated with the dependency.

The code may perhaps include portions within two difter-
ent domains, in which the mechanism for calculating depen-
dencies may differ. For instance, in one domain that uses
static languages, perhaps static analysis is performed to cal-
culate dependencies. In another domain that uses dynamic
languages, perhaps runtime dynamic analysis is used to per-
form the dependency calculation. In some cases, the depen-
dency graph may be constructed in stages. For instance, per-
haps dependencies based on static analysis are performed
first. Later, dynamic analysis may be performed to augment
the graph. Furthermore, perhaps even iterations of dynamic
analysis may be performed over time, with each iteration
adding to the graph. In some embodiments, additional prop-
erties may be associated with the node, and metadata of the
properties may also be recorded (such as how the property
was calculated, the confidence and soundness of the property,
and so forth).

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
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2

particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 illustrates an example computing system that may
be used to employ embodiments described herein;

FIG. 2 illustrates a first example dependency graph that
represents various dependencies within a computing pro-
gram;

FIG. 3 illustrates a second example dependency graph that
represents various dependencies that may perhaps exist at a
different granular level than the first example dependent
graph of FIG. 2;

FIG. 4 abstractly illustrates an example node data structure
that includes properties of the node, including perhaps a
dependency property, as well as various characteristics about
each of the properties;

FIG. 5 illustrates a flowchart of a method for generating a
dependency graph in accordance with the principles
described herein;

FIG. 6 illustrates a flow in which the dependency graph is
generated over time in various stages;

FIG. 7 illustrates an example composition of a WINDOWS
8 JavaScript application is illustrated in FIG. 7;

FIG. 8 illustrates a summary connection between concrete
pointer analysis and use analysis;

FIG. 9A shows a connection between variables and the
heap H=H , U H, U H; in the context of partial inference;

FIG. 9B shows a similar connection between variables and
the heap H=H , U H; in the context of full inference, which
lacks H;;

FIG. 10 illustrates a set of facts in relations of fixed arity
and type;

FIG. 11A illustrates rules for Andersen-style inclusion-
based points-to analysis;

FIG. 11B illustrates inference rules for use analysis; and

FIG. 12 illustrates the use of symbolic locations into
PointsTo and HeapPtsTo, and Prototype.

DETAILED DESCRIPTION

In accordance with embodiments described herein, the
generation of a dependency graph for code is described. The
code may include code portions such as resources or func-
tions or both. For some or all of the nodes, the dependency is
calculated by determining that the given node, a depending
node, depends on an affecting node. The dependency is
recorded so as to be associated with the node. Furthermore,
the dependency calculation method is recorded so as to be
associated with the dependency. The code may perhaps
include portions within two different domains, in which the
mechanism for calculating dependencies may differ. In some
cases, the dependency graph may be constructed in stages,
and perhaps additional properties may be associated with the
node, and metadata of the properties may also be recorded.

First, introductory discussion regarding computing sys-
tems is described with respect to FIG. 1. Computing systems
are now increasingly taking a wide variety of forms. Com-
puting systems may, for example, be handheld devices, appli-
ances, laptop computers, desktop computers, mainframes,
distributed computing systems, or even devices that have not
conventionally been considered a computing system. In this
description and in the claims, the term “computing system” is
defined broadly as including any device or system (or com-
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bination thereof) that includes at least one physical and tan-
gible processor, and a physical and tangible memory capable
of'having thereon computer-executable instructions that may
be executed by the processor. The memory may take any form
and may depend on the nature and form of the computing
system. A computing system may be distributed over a net-
work environment and may include multiple constituent com-
puting systems.

As illustrated in FIG. 1, in its most basic configuration, a
computing system 100 typically includes at least one process-
ing unit 102 and memory 104. The memory 104 may be
physical system memory, which may be volatile, non-vola-
tile, or some combination of the two. The term “memory”
may also be used herein to refer to non-volatile mass storage
such as physical storage media. If the computing system is
distributed, the processing, memory and/or storage capability
may be distributed as well. As used herein, the term “module”
or “component” can refer to software objects or routines that
execute on the computing system. The different components,
modules, engines, and services described herein may be
implemented as objects or processes that execute on the com-
puting system (e.g., as separate threads).

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented in software,
one or more processors of the associated computing system
that performs the act direct the operation of the computing
system in response to having executed computer-executable
instructions. An example of such an operation involves the
manipulation of data. The computer-executable instructions
(and the manipulated data) may be stored in the memory 104
of the computing system 100. Computing system 100 may
also contain communication channels 108 that allow the com-
puting system 100 to communicate with other message pro-
cessors over, for example, network 110.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including com-
puter hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below.
Embodiments described herein also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such
computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
system. Computer-readable media that store computer-ex-
ecutable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions
are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media: computer storage media and transmission media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer. In this description and in the claims, a
“computer program product” includes one or more computer
storage media having computer-executable instructions
thereon that, when executed by the one or more processors of
the computing system, perform the function of the computer
program product.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
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or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for-
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

FIG. 2 illustrates a dependency graph 200 that represents
various dependencies in a computer program. Dependency
graphs will be different according to the computer program.
There may be dependency graphs from as simple as the trivial
case of a single node to as complex as thousands, or even
perhaps millions of nodes. Accordingly, the dependency
graph 200 should be viewed as an example only, and in no
way limiting the broader principles described herein. This
flexibility is abstractly represented by the ellipses 220 of FIG.
2. Furthermore, in dynamic language programs, the depen-
dency graph may itself be dynamic.

The dependency graph 200 includes nine nodes 201
through 209. Each node is a data structure and corresponds to
a code portion in a computer program. In this description and
in the claims, a “code portion™ is to be interpreted broadly as
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including any part of a computer program, whether computer-
executable instructions or data. For instance, the code portion
might be a resource, such as a file or set of files. On the other
hand the code portion might be a function, code snippet,
object, or any other code segment. In the case of a dependency
graph in which each node represents a function, and each
dependency is a function call, the dependency graph may be
referred to as a “call graph”.

The code portion may be coded in static language or
dynamic language. Static language programs often have a
well-defined type structure. In dynamic language programs,
on the other hand, the type system is not well-defined, and it
is often difficult to tell where a type of a variable was even
established. Further, in dynamic languages, a single variable
can have different types dependent on where the execution is
in the code. In addition, the type of a variable at a particular
location in the code may change over time in dynamic lan-
guage programs. For instance, a parameter dereference may
have its type changed between one or more calls. Accord-
ingly, the analysis of a dynamic language program can prove
to be quite challenging, as such dynamic language programs
do not lend themselves to static analysis. Examples of
dynamic language programs include scripting languages
such as Javascript, Visual Basic Scripting Edition (VBScript),
and many others.

Returning to FIG. 2, the dependency graph 200 has edges
(represented by arrows) that represent a dependency between
two nodes. The node at the tail of the arrow is the node (also
called herein an “affecting node” when referencing the par-
ticular dependency) that corresponds to the code portion (also
called herein an “affecting code portion™) that satisfies the
dependency for the code portion (also called herein a
“depending code portion”) corresponding to the node (also
called herein a “depending node”) at the head of the arrow.
For instance, with respect to edge 211, node 201 is the affect-
ing node and node 202 is the depending node. With respect to
edge 212, node 202 is the affecting node and node 203 is the
depending node. Furthermore, edge 213 shows that node 202
depends from node 204, edge 214 shows that node 207
depends from node 204, edge 215 shows that node 207
depends from node 208, edge 216 shows that node 209
depends from node 207, edge 217 shows that node 206
depends from node 203, edge 218 shows that node 207
depends from node 206, and edge 219 shows that node 207
depends from node 203. Note that node 205 has no detected
dependencies from any other node, nor does node 205 affect
any other node.

FIG. 3 illustrates another dependency graph in which there
are four nodes 301 through 304, and with edges 311 through
314 showing the relative dependencies. In some embodi-
ments, different dependency graphs are overlaid upon each
other. As an example, suppose that dependency graph 300 is
a higher level dependency graph showing dependencies
between files. Thus, nodes 301 through 304 may each repre-
sent a corresponding file. Now suppose that dependency
graph 200 represents function-level interaction within the file
represented by node 302. The other files might have corre-
sponding function level dependency graphs that interact at the
function-level with functions in other files. The fact that the
nodes of FIG. 3 may be represented at different levels than the
node of FIG. 2 is abstractly represented by the nodes of FIG.
3 having a different shape (i.e., rectangular) as compared to
the nodes of FIG. 2(i.e., circular). Thus, in a sense, as FIGS.
2 and 3 illustrate, some embodiments do not merely construct
a single graph, but rather an overlay of multiple graphs, such
as 300 and 200, which could be thought of as a database of
graph nodes and edges in which nodes are interrelated with
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each other in a single graph, as well as interrelated with one or
more other graphs at different levels (e.g., graph 300 is a
higher level dependency graph than graph 200, as noted
above).

For instance, there could be a file/binary code container
graph of dependencies at one level. However, there might also
be a call graph that could contain a node for all functions and
every call target. Either of these dependency graphs could be
organize by application versus library code. The APIs that are
callable by some implied runtime condition required to use
them might also be represented in the dependency graphs. For
instance, the runtime condition might be that there is a web-
cam available and that the user has given permission to use the
webcam. The various nodes in the dependency graphs could
be annotated with properties and/or metadata that could help
reorganize, construct, and/or permit traversal of the depen-
dency graph at the appropriate level.

Referring again to FIG. 2, some of the nodes 201 through
205 are located in a first domain 221, and others of the nodes
206 through 209 are located in a second domain 222. Which
domain a particular node is located in may have impact on
how the dependencies are calculated, and/or on how other
properties of the node are calculated.

As an example, suppose the domain 221 is a static language
domain meaning that the constituent nodes represent code
portions that are created from static language programs. In
that case suppose the domain 222 is a dynamic language
domain meaning that the constituent nodes represent code
portions that are created from dynamic language programs.
Static analysis is effective for static language programs, but
dynamic runtime analysis is used for dynamic language pro-
grams. As another example, suppose that domain 221 con-
tains nodes that are nodes that represent an application pro-
gram, whereas domain 222 contains nodes that represent
portions of the operating system.

There will be a somewhat detailed discussion of dependen-
cies before the description returns reference to the figures.
Dependencies may be learned from in-source comments that
describe dependencies (such as utilization of an external
framework library such as JQuery), dependencies that can be
determined statically from actual code (such as dynamic
insertion of a <script> element with a specific URL), and/or
code that dynamically loads script which cannot be statically
determined (described further below), and so forth.

As for implied dependencies, there are several categories
of callable API that are not expressed as code that is parsed/
interpreted/executed by a runtime. These include 1) DOM
API, 2) other external API, and 3) surrogate code. Each will
now be explained.

As for surrogate code, in some cases, for perhaps reasons of
performance, convenience, or security, source code that exists
and is actually parsed/executed in real world execution might
be replaced by surrogate JavaScript code that can be executed
in context of the language.

Absent a well-maintained and properly ordered set of in-
source annotations describing a JS file’s dependencies, an
HTML file that consumes some JavaScript can be very help-
ful for determining references as well as proper ordering of
file load (since any HTML file organizes its script elements
properly in order for code to execute correctly). JavaScript
files may provide a reference to an HTML file that consumes
it in order to identify what other JS code it might depend on
and in what order they should load. This can save significant
developer maintenance costs. HTML also can contain
embedded code (e.g., within <script> elements or as embed-
ded script associated with event handlers) that should be
extracted and passed to the language service (since a file
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under edit might itself depend on this code). Finally, some
browsers populate the JS callable API with variables that
represent HTML elements expressed in the mark-up. In Inter-
net Explorer, for example, any div marked with an id can be
referred to from JavaScript directly by that id (rather than
acquiring it via getElementByld). For this case, the HTML
would be parsed looking for elements with an ID and then
construct surrogate JS that populates the global namespace
with the appropriate set of identifiers. Similarly, a dymanic
analysis might walk the DOM at a specific point in time in
order to identify elements marked with an “id”.

These categories are useful for driving user experience/
configuration, potentially dictate handling in the general
framework itself and could imply special handling in a lan-
guage service provider. Users might configure a project for a
web application as targeting only a specific version of a
browser. As mentioned, the infrastructure might treat external
code with more care than trusted application code. When
calculating a closure of dependencies that might be in play for
editing a specific file, the infrastructure might also make
decisions based on these categorizations. The downloader
might not aggressively parse external files, for example, for a
complete closure of its possible dependencies but depend
instead on the hooks in the engine to identify when that
external code itself pulls in other files.

Returning to the figures, F1G. 4 abstractly illustrates a node
data structure 400. The node 400 includes properties 401
through 404, although the ellipses 405 represents flexibility in
the number and types of properties that node 400 may repre-
sent. Each property represents facts about the code portion
corresponding to the node 400. Each property may have zero
or more properties (i.e., metadata) describing facts about the
corresponding property. For instance, metadata 411 through
414 describe metadata of the corresponding property 401,
metadata 421 through 424 describe metadata of the corre-
sponding property 402, metadata 431 through 434 describe
metadata of the corresponding property 403, and metadata
441 through 444 describe metadata of the corresponding
property 404. The ellipses 450 represents great flexibility in
the number and types of metadata corresponding to each
property, and further that the number and type of metadata
describing different properties need not be the same for each
property.

An example of a node property includes a dependency. For
instance, suppose property 401 describes which nodes, if any,
the node 400 depends from. Other examples of properties
include a content characteristic of the depending code por-
tion. For instance, the properties might be whether or not a
particular code pattern is found within the corresponding
code portion, or whether or not certain coding policy has been
complied with.

The properties might include one or more predicted con-
sequences for executing the code portion. For instance, analy-
sis might conclude that a sensitive memory location is
accessed, and the network is used, or some other result of
execution.

The properties might include a language use characteristic
of'the code portion. For instance, they might report whether or
not a certain language construct (such as “eval”) has been
used.

The properties might also include a source characteristic of
the code portion. For instance, they might report which file
loaded the component.

Metadata, on the other hand, is not properties about the
code portion, but properties about the properties 401 through
404. As examples, the metadata might include information
regarding how the calculated property was calculated, a con-
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fidence level in how the calculated property was calculated, a
soundness level in how the calculated property was calcu-
lated, one or more conditions of the calculated property, and
so forth.

FIG. 5 illustrates a flowchart of a method 500 for generat-
ing a dependency graph. The nodes are accessed (act 501).
Part of the node identities of the program code may be pre-
viously known and/or part of the node identities of the pro-
gram code may be identified during the analysis itself.
Regardless, the node’s identities are accessed. The contents
of'the dashed lined box 510 are then performed for each node,
and for each property to be constructed for the node.

Specifically, the property is calculated for the respective
node by determining or estimating facts about the node (act
511). For instance, dependency is calculated upon determin-
ing that the given node, a depending node, depends from an
affecting node. The property (e.g., the dependency) is then
recorded (act 512) in a manner associated with the node. For
instance, referencing FIG. 4, the properties 401 through 404
are recorded inside the node data structure 400. The contexts
of dotted lined box 520 are then performed for each item of
metadata associated with the property. The metadata is then
recorded (act 521) in a manner associated with the property.

A dependency graph constructed in this way has the poten-
tial to become a powerful tool for program analysis. For
instance, as just a few examples of use, a reachability analysis
might be performed to verify whether there is a possibility of
memory access violations (e.g., accessing the same resource
atthe same time). The dependency graph may beused to clean
up the program. In FIG. 2, for example, node 205 shows
likelihood that the corresponding code portion may be
removed from the program with no consequence. The depen-
dency graph may also be used to minimize material that is
copied from one program to another. In FIG. 2, for example,
if the code portion corresponding to node 202 is to be copied
to another program to another, the entire program need not be
copied, just the corresponding code portions for the node 202
and its two affecting nodes 201 and 204. The dependency
graph may also be used to evaluate the impact or effect of a
change. In FIG. 2, for example, if the code in node 203 is
changed then it has an effect on nodes 203, 206 and 207. This
effect has repercussions on retesting components and the
stability of a system.

The dependency graph may be constructed in multiple
stages. The described structure enables this to happen. For
instance, some of the code portions may be identified, and
some of the dependencies may be identified in an earlier
stage, whereas additional nodes and dependencies may be
identified (and perhaps prior identified dependencies may be
nullified), in response to subsequent stages.

FIG. 6 illustrates a sequence 600 of three stages 601, 602,
603 of dependency graph construction. Ellipses 613, how-
ever, represents that there may be many stages of dependency
graph construction. Method 500 may be performed at each
stage. The dependency graph shown in sequence 600 is analo-
gous to the dependency graph of FIG. 2 in that the ultimate
result is the same.

In the first stage 601, only 8 of the 9 nodes are properly
identified. Furthermore, only 4 dependencies are identified.
Moving (see arrow 611) to the second stage 602, all 9 of the
nodes are now identified, and an additional 2 dependencies
(making 6 total) have now been identified. Moving (see arrow
612) to the third stage 603, an additional two dependencies
have been identified resulting in 9 total, thereby arriving at the
dependency graph 200 of FIG. 2. In addition to the identity of
the nodes themselves and the corresponding dependency,
other properties may change as well. In addition, the metadata
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about the properties may change. For instance, a confidence
level associated with a property may grow stronger with each
additional stage of analysis.

This represents a kind of learning process where informa-
tion learned from prior analysis may be used in subsequent
analysis, and other information known for the current analy-
sis (e.g., the runtime environment in case of dynamic analy-
sis) may be leveraged in the current analysis. As an example,
perhaps stage 601 represents a static analysis of the program.
Stage 602 might represent a first iteration of dynamic analy-
sis, and stage 603 might represent a second iteration of
dynamic analysis.

Accordingly, the principles described herein describe a
flexible structure for determining a dependency graph, and
providing queryable information associated with each node
in the dependency graph. Now, a more specific way of for-
mulating a dependency graph for dynamic language pro-
grams (e.g., specifically Javascript) will be described.

1. Analysis Challenges

Before proceeding further, the challenges faced in per-
forming static analysis when trying to analyze JavaScript
applications that depend on libraries will now be described.

1.1 Whole Program Analysis

Whole program analysis in JavaScript has long been
known to be problematic. Indeed, libraries such as the
Browser API, the HTML DOM, node:js (written in either in
C++ or Javascript) and the WINDOWS 8 API are all imple-
mented in native languages such as C and C++. These imple-
mentations are therefore often simply unavailable to static
analysis. Since no JavaScript implementation exists, static
analysis tool authors are often forced to create stubs. This,
however, brings in the issues of stub completeness and cor-
rectness (as well as development costs). Finally, JavaScript
code frequently uses dynamic code loading, requiring static
analysis at runtime, further complicating whole-program
analysis.

1.2 Underlying Libraries and Frameworks

While analyzing code that relies on rich libraries has been
recognized as a challenge for languages such as Java, JavaS-
cript presents a set of unique issues.

Complexity: Even if the application code is well-behaved
and amenable to analysis, complex JavaScript applications
frequently use libraries such as jQuery and Prototype. While
these are implemented in JavaScript, they present their own
challenges because of extensive use of reflection such as eval
or computed property names. Recent work has made some
progress towards understanding and handling eval, but these
approaches are still fairly limited and do not fully handle all
the challenges inherent to large, complex applications.

Scale of libraries: Underlying libraries and frameworks are
often very large. In the case of Windows 8 applications, they
are tens of thousands of lines of code, compared to several
thousand for applications on average. Requiring them to be
analyzed every time an application is subjected to analysis
results in excessively long running times for the static ana-
lyzer.

1.3 Tracking Interprocedural Flow

Points-to analysis selectively embeds an analysis of inter-
procedural data flow to model how data is copied across the
program. However, properly modeling interprocedural data
flow is a formidable task.

Containers: The use of arrays, lists, maps, and other com-
plex data structures frequently leads to conflated data flow in
static analysis; an example of this is when analysis is not able
to statically differentiate distinct indices of an array. This
problem is exacerbated in JavaScript because of excessive use
of the DOM, which can be addressed both directly and
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through tree pointer traversal. Similarly, the HTML DOM,
jQuery and other libraries provide a variety of ways to query
the DOM indirectly. For instance document:body is a direct
lookup, whereas document:getElementsByName(“body™)
[0] is an indirect lookup. Such indirect lookups present spe-
cial challenges for static analyses because they require
explicit tracking of the association between lookup keys and
their values. This problem quickly becomes unmanageable
when CSS selector expressions are considered (e.g., as in the
use of the jQuery $( ) selector function), as this would require
the static analysis to reason about the whole tree structure of
the HTML page. This is especially problematic for insensitive
analyses, where trees are likely to collapse into more or less
fully connected graphs.

Reflective calls: Another typical challenge of analyzing
JavaScript code stems from reflective calls into application
code being “invisible”. As a result, callbacks within the appli-
cation invoked reflectively will have no actuals linked to their
formal parameters, leading to variables within these callback
functions having empty points-to sets.

1.4 Soundness

Maintaining soundness in a JavaScript static analysis is a
formidable challenge. Our position is that use analysis can be
used to augment both a sound and an unsound underlying
pointer analysis. In practice, however, a sound yet precise
pointer analysis for JavaScript is exceedingly difficult to cre-
ate for realistically-sized programs. Dynamic language fea-
tures present a significant challenge.

Dynamic code loading is widespread, leading to the need
for a hybrid static/runtime analysis. Even if eval is uncom-
mon, computed properties such as a[p+q]= . . . lead to dra-
matic loss of precision.

The execution environment presents a variety of unex-
pected ways to either introduce code at runtime (such as
Function, setTimeout, etc.) or cross heap boundaries through
the use of arguments:callee, with, the global object, etc.

Language subsets have been proposed as a way to control
unsoundness, however, in practice only small programs fit
into these subsets.

JavaScript semantics are complicated, leading to attempts
both to formalize it and to dismantle JavaScript into manage-
able elements. Yet, none of these approaches combine the
practicality and correctness properties that would enable
large-scale sound analysis.

The approach described hereinafter, therefore, is to pro-
pose an analysis which, while it may be used in a sound
setting with the right assumptions, is largely evaluated for its
practical utility on important benchmarks.

2. Overview

The composition of a WINDOWS 8 (or Win8) JavaScript
application is illustrated in FIG. 7. These are frequently com-
plex applications that are not built in isolation: in addition to
resources such as images and HTML, Win8 applications
depend on a range of JavaScript libraries for communicating
with the DOM, both using the built-in JavaScript DOM API
and rich libraries such as jQuery and WinJS (an application
framework and collection of supporting APIs used for Win-
dows 8 HTML development), as well as the underlying WIN-
DOWS runtime.

2.1 Analysis Overview

Despite having incomplete information about this exten-
sive library functionality, much can be discerned from
observing how developers use library code. For example, if
there is a call whose base is a variable obtained from a library,
the variable refers to a function for the call to succeed. Simi-
larly, if there is a load whose base is a variable returned from
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a library call, the variable refers to an object that has that
property for the load to succeed.

A summary of the connection between the concrete pointer
analysis and use analysis described herein is graphically illus-
trated in FIG. 8. In this example, function process invokes
functions mute and playSound, depending on which button
has been pressed. Both callees accept variable a, an alias of a
library-defined Windows:Media: Audio, as a parameter. The
arrows in FIG. 8 represent the flow of constraints.

Points-to analysis (downward arrows) flows facts from
actuals to formals—functions receive information about the
arguments passed into them, while the use analysis (upward
arrows) works in the opposite direction, flowing demands on
the shape of objects that are passed in from formals to actuals.

Specifically, the points-to analysis flows variable a, defined
in process, to formals x and y. Within functions playSound
and mute, it can be seen that these formal arguments must
have functions Volume and Mute defined on them, which
flows back to the library object that variable a must point to.
Its shape as a result must contain at least functions Volume
and Mute.

Use analysis: The notion of use analysis above leads us to
an inference technique, which comes in two flavors: partial
and full.

Partial inference assumes that stubs for libraries are avail-
able. Stubs are not required to be complete implementations,
instead, function implementations are frequently completely
omitted, leading to missing data flow. What is required is that
all objects, functions and properties exposed by the library are
described in the stub. Partial inference solves the problem of
missing flow between library and application code by linking
together objects of matching shapes, a process called unifi-
cation (described in section 3.3 below).

Full inference is similar to partial inference, but goes fur-
ther in that it does not depend on the existence of any stubs.
Instead, it attempts to infer library APIs based on uses found
in the application. Paradoxically, full inference is often faster
than partial inference, as it does not need to analyze large
collections of stubs, which is also wasteful, as a typical appli-
cation only requires a small portion of them.

In the rest of section 2, concepts related to the analysis are
built up. Precise analysis details are found in Section 3.

Library stubs: Stubs are commonly used for static analysis
in a variety of languages, starting from libe stubs for C pro-
grams, to complex and numerous stubs for JavaScript built-
ins and DOM functionality.

The following code is an example of stubs from the WinRT
library.

Windows.Storage.Stream.FileOutputStream = function( ) { };
Windows.Storage.Strean.FileOutputStream.prototype = {
writeAsync = function( ) { },
flushAsyne = function( ) { },
close = function( ) { }

Note that stub functions are empty. This stub models the
structure of the FileOutputStream object and its prototype
object. It does not, however, capture the fact that writeAsync
and flushAsync functions return an AsyncResults object. Use
analysis can, however, discover this if we consider the fol-
lowing code:

var s = Windows.Storage. Stream;
var fs = new s.FileOutputStream(...)
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-continued

fs.writeAsync(...).then(function( ) {

s

We can observe from this that fs:write Async should return
an object whose then argument is a function. These facts
allow us to unify the return result of writeAsync with the
Promise object, the prototype of the Promise object declared
in the WinJS library.

2.2 Symbolic Locations and Unification

Abstract locations are typically used in program analyses
such as a points-to analysis to approximate objects allocated
in the program at runtime. We employ the allocation site
abstraction as an approximation of runtime object allocation
(denoted by domain H in our analysis formulation). In this
description, partial and full inference scenarios are consid-
ered.

It is useful to distinguish between abstract locations in the
heap within the application (denoted as H ,) and those within
libraries (denoted as H;). Additionally, a set of symbolic
locations H is maintained; these are used for reasoning about
results returned by library calls. In general, both library and
application abstract locations may be returned from such a
call.

It is instructive to consider the connections between the
variable V and heap H domains. FIG. 9A shows a connection
between variables and the heap H=H, U Hg U H; in the
context of partial inference. FIG. 9B shows a similar connec-
tion between variables and the heap H=H , U H in the context
of full inference, which lacks H;. Variables within the V
domain have points-to links to heap elements in H; H ele-
ments are connected with points-to links that have property
names.

Since at runtime actual objects are either allocated within
the application (H ) or library code (H,), the symbolic loca-
tions Hy is unified with those in H, and H;.

2.3 Inference Algorithm

Because of missing interprocedural flow, a fundamental
problem with building a practical and usable points-to analy-
sis is that sometimes variables do not have any abstract loca-
tions that they may point to. Of course, with the exception of
dead code or variables that only point to null and undefined,
this is a static analysis artifact. In the presence of libraries,
several distinct scenarios lead to 1) dead returns: when a
library function stub lacks a return value; 2) dead arguments:
when a callback within the application is passed into a library
and the library stub fails to properly invoke the callback; and
3) dead loads: when the base object reference (receiver) has
no points-to targets.

Strategy: The overall strategy described herein is to create
symbol locations for all the scenarios above. To do this, an
iterative algorithm is employed. At each iteration, a points-to
analysis pass is run and then proceed to collect dead argu-
ments, returns, and loads, introducing symbol locations for
each. A unification step is then performed, where symbolic
locations are unified with abstract locations. A detailed
description of this process is given in Section 3.

Iterative solution: An iterative process is used because new
points-to targets in the process of unification may be discov-
ered on each successive pass. As the points-to relation grows,
additional dead arguments, returns, or loads are generally
discovered, leading to further iterations. Iteration is termi-
nated when the iteration can no longer find dead arguments,
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dead returns, or dead loads. Note that the only algorithmic
change for full analysis is the need to create symbolic loca-
tions for dead loads.

Unification strategies: Unification is the process of linking
or matching symbolic locations with matching abstract loca-
tions. In Section 3.3, three strategies will be explored: unify
based on matching of a single property, all properties, and
prototype-based unification.

3. Techniques

The techniques described herein are based on pointer
analysis and use analysis. The pointer-analysis is a flow and
context-insensitive subset-based. The analysis is field-sensi-
tive, meaning that it distinguishes properties of different
abstract objects. The call-graph is constructed on-the-fly
because JavaScript has higher-order functions, and so the
points-to and call graph relations are mutually dependent.
The use analysis is based on unification of symbolic and
abstract locations based on property names.

3.1 Pointer Analysis

The input program is represented as a set of facts in rela-
tions of fixed arity and type summarized in FIG. 10 and
described below. Relations use the following domains: heap-
allocated objects and functions H, program variables V, call
sites C, properties P, and integers Z.

The pointer analysis implementation is formulated
declaratively using Datalog, as has been done in range of prior
projects. The JavaScript application is first normalized and
then converted into a set of facts. These are combined with
Datalog analysis rules resolved using the Microsoft Z3 fix-
point solver. The most important definitions used for program
representation are described below.

Assign(vl; v2) represents an assignment from v2 into v1.
We use Assign to model JavaScript assignments, but also for
linking actual argument values to formal arguments, and
actual return values to formal returns.

NewObj(v; h; f) represents the creation of an object at
allocation siteh which is stored in variable v and fis a variable
holding the constructor function. Each syntactic new-state-
ment has its own allocation site. Furthermore each function
declaration or expression has an associated allocation site for
its prototype object. Finally, we have allocation sites for built-
in objects such as the global object, the Array object (and its
prototype), the String object (and its prototype) and so on.

Load(v1; v2; p) represents a load from property p. In Java-
Script this corresponds to expressions such as v1=v2:p.
Qualified expressions, such as foo:bar:baz, are broken into
several atomic Load facts by introducing temporary vari-
ables. The LoadDynamic(vl; v2) constraint represents a
dynamic or computed property, i.e. a load where the property
name is not known syntactically, which is helpful for model-
ing arrays.

Store(v1; p; v2) is similar to Load and represents JavaS-
cript expressions such as vl:p=v2. Likewise StoreDynamic
(v1; v2) represents a dynamic store where the property name
is not known.

FormalArg(f; i; v), Actual Arg(c; i; v), FormalRet(f; v) and
ActualRet(c; v) are used for modeling argument passing and
function returns. A FormalArg(f; i; v) fact represents that the
i’th argument of function f is read from v. Similarly, Actu-
alArg(c; i; v) represents that the i’th actual argument at call
site ¢ is stored in v. If a function flows to a call site ¢ these facts
are linked together using Assign. The FormalRet and Actual-
Ret facts are used in a similar way.

Prototype(hl; h2) states that the internal prototype of hl
may be h2. Note that the loads/stores to the external prototype
property are handled using regular [.oad and Store facts.

10

15

20

25

30

40

45

50

55

60

65

14

Rules for the Andersen-style inclusion-based points-to
analysis are shown in FIG. 11A. Example rules for use analy-
sis are shown in FIG. 11B.

In the rest of this section, we shall use the V quantifier
and => implication connectives in our Datalog rules to ease
presentation. While these connectives are usually not sup-
ported in Datalog engines, they can be encoded as follows:
C(x; z):-V y:A(x; y)=>B(y, 2).
is equivalent to the datalog rules:

N(x; z):- VA(X,y), 7 B(y, 2).
C(x; z):- VA(X,y), B(y; z), " N(x, z).

3.2 Extending with Partial Inference

We now describe how the basic pointer analysis can be
extended with use analysis in the form of partial inference. In
partial inference we assume the existence of stubs that
describe all objects, functions and properties. Function
implementations, as stated before, may be omitted. The pur-
pose of partial inference is to recover missing flow due to
missing implementations. Flow may be missing in three dif-
ferent places: arguments, return values, and loads.

DeadLoad(h : H, p : P) where h is an abstract location and
p is a property name, records that property p is accessed from
h, but h lacks a p property. We capture this with the rule:
DeadLoad(h, p):- Load(vl, v2, p),

PointsTo(v2, h),

- HasProperty(h, p),

AppVar(vl),

AppVar(v2).

Here the PointsTo(v2, h) constraint ensures that the base
object is resolved. The two AppVar constraints ensure that the
load actually occurs in the application code and not the library
code.

DeadArgument(f: H, i: Z) where fis a function and I is an
argument index records that the i'th argument has no value.
We capture this with the rule:

DeadArgument(t, 1):- FormalArg(f, I, v),

-1 ResolvedVariable(v),

AppAlloc(f).

z>1:

Here the AppAlloc constraint ensures that the argument
occurs in a function within the application code, and not in the
library code; argument counting starts at 1.

DeadReturn(c: C, v: V), where c is a call site and v is the
result value, records that the return value for call site ¢ has no
value, and is captured by the following rule.

DeadReturn(c, v2):- ActualArg(i, 0, v1),

PointsTo(v1, 1),

ActualRet(i, v2),

- ResolvedVariable(v2),

- AppAlloc(f).

Here the PointsTo(v1, ) constraint ensures that the call site
has call targets. The - App Alloc(f) constraint ensures that the
function called is not an application function, but either (a) a
library function or (b) a symbolic location.

We use these relations to introduce symbolic locations into
PointsTo, HeapPtsTo, and Prototype as shown in FIG. 12. In
particular for every dead load, dead argument and dead return
we introduce a fresh symbolic location. We restrict the intro-
duction of dead loads by requiring that the base object is not
a symbolic object, unless we are operating in full inference
mode. This means that every load must be unified with an
abstract object, before we consider further unification for
properties on that object. In full inference we have to drop this
restriction, because not all objects are known to the analysis.

3.3 Unification

Unification is the process of linking or matching symbolic
locations s with matching abstract locations 1. The simplest
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form of unification is to do no unification at all. In this case, no
actual flow is recovered in the application. Below we explore
unification strategies based on property names.

3 shared properties: A choice here is to link objects which
share at least one property. Unfortunately, with this strategy,
most objects quickly become linked. Especially problematic
are properties with common names, such as length or
toString, since all objects have the latter property.

V shared properties: We can improve upon this strategy by
requiring that the linked object must have all properties of the
symbolic object. This drastically cuts down the amount of
unification, but because the shape of s is an over-approxima-
tion, requiring all properties to be present may link to too few
objects, introducing unsoundness. It can also introduce
imprecision: if we have s with function trim( ), we will unify
s to all string constants in the program.

The purpose of unification is to recover dead flow by link-
ing symbolic locations to abstract locations. We unify a sym-
bolic location with an abstract location when all the proper-
ties accessed from the symbolic location are available on the
abstract location. We begin by defining the relation:
CandidateObject(hl, h2):- Deadl.oad(hl, p),

HasProperty(h2, p),

Symbolic(h1),

= Symbolic(h2),

- HasDynamicProps(hl),

- HasDynamicProps(h2),

= SpecialProperty(p).

This expresses which symbolic and abstract locations h1
and h2 are candidates for unification. First, we require that the
symbolic and abstract location share at least one property.
Second, we require that neither the symbolic nor the abstract
object have dynamic properties. Third, we disallow com-
monly-used properties, such as prototype and length, as evi-
dence for unification. The relation below captures when two
locations h1 and h2 are unified:

UnifyObject(hl, h2):- CandidateObject(h1, h2),

V p:Deadl.oad(hl, p)=>

HasProperty(h2, p).

This states thath1 and h2 must be candidates for unification
and that if a property p is accessed from h1 then that property
must be present on h2. If hl and h2 are unified then the
HeapPtsTo relation is extended such that any place where h1
may occur h2 may now also occur.

Prototype-based unification: Instead of attempting to unify
with all possible abstract locations 1, an often better strategy is
to only unify with those that serve as prototype objects. Such
objects are used in a two-step unification procedure: first, we
see if all properties of a symbolic object can be satisfied by a
prototype object, if so we unify them and stop the procedure.
If not, we consider all non-prototype objects. We take the
prototype hierarchy into consideration by unifying with the
most precise prototype object.

The following example illustrates how this can improve
precision:

var firstName = “Lucky”;
var lastName = “Tuke”;
var favoriteHorse = “Jolly Jumper”;
function comparelgnoreCase(s1, s2) {
return s1.toLowerCase( ) < s2.toLowerCase( );

}

Here we have three string constants and a comparator func-
tion. Assume that the comparator is passed into a library as a
callback. In this case the pointer analysis does not know what

5
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the two arguments s1 and s2 may point to, but the use analysis
knows that these arguments must have a toL.owerCase prop-
erty. The unification, described so far, would continue by
linking the arguments to all abstract locations which have the
toLowerCase property.

Unfortunately, all string constants have this property, so
this over-approximation is overly imprecise. We obtain better
unification by first considering prototype objects. In this case
we discover that the String|[Proto] object has the toL.ower-

0 Case property. In prototype-based unification, we merely
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conclude that the prototype of s1 and s2 must be StringJPro-
toK.

Inthe above discussion we did not precisely define what we
consider to be prototype objects: we consider all objects
which may flow to the prototype property of some object to be
prototype objects. Furthermore built-in prototype objects,
such as Array and String, are known to be prototype objects.
This is captured by the PrototypeObj rule.

One issue remains: What if multiple prototype objects are
possible for unification? In this case we select the most pre-
cise object in the prototype hierarchy, i.e. the object that is
highest in the prototype chain. This rule captures the fact that
it is possible to unify h1 with h2, but there is also some h3 in
the prototype chain of h2 that could be unified with h1. This
means that h1 and h2 should not be unified.
NoLocalMatch(h1, h2).—

Prototype(h2, h3),

V p:Deadl.oad(hl, p)=>HasProperty(h2, p),

V p:Deadl.oad(hl, p)=>HasProperty(h3, p),

CandidateProto(h1, h2),

CandidateProto(h1, h3),

h2=h3.

We can define prototype-based unification as
UnifyProto(hl, h2):—

- NoLocalMatch(hl, h2),

CandidateProto(h1, h2).

V p:Deadl.oad(hl, p)=>HasProperty(h2, p).

The above captures that h1 and h2 are compatible and there
is no matching object in the prototype chain of h2.

3.4 Extending with Full Inference

As shown in the pseudo-code in FIG. 12, we can extend the
analysis to support full inference with a simple change. Recall
that, in full inference we do not assume the existence of any
stubs, and the application is analyzed completely by itself. We
implement this by dropping the restriction that symbolic loca-
tions are only introduced for non-symbolic locations. Instead
we will allow a property of a symbolic location to point to
another symbolic location.

Introducing these symbolic locations will resolve a load,
and in doing so potentially resolve the base of another load.
This is in turn may cause another dead load to appear for that
base object. In this way the algorithm can be viewed as a
frontier expansion along the known base objects. At each
iteration the frontier is expanded by one level. This process
cannot go on forever, as there is only a fixed number of loads,
and thereby dead loads, and at each iteration at least one dead
load is resolved.

Accordingly, the principles described herein provide for
complex and robust analysis of dynamic code. The present
invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The
described embodiments are to be considered in all respects
only as illustrative and not restrictive. The scope of the inven-
tion is, therefore, indicated by the appended claims rather
than by the foregoing description. All changes which come
within the meaning and range of equivalency of the claims are
to be embraced within their scope.
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What is claimed is:

1. A computer program product comprising one or more
computer storage media having thereon computer-executable
instructions that are structured such that, when executed by
the one or more processors of a computing system, causes the
computing system to perform a method for generating a plu-
rality of overlaid dependency graphs for code that includes a
plurality of code portions, the method comprising acts of:

accessing a first plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the first plural-
ity of nodes;

for the first plurality of nodes, generating a higher level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the first
plurality of nodes by determining that said one or
more nodes are depending nodes that correspond to a
depending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the first plurality of nodes;

recording the dependency in a manner associated with
each node in the first plurality of nodes for which a
dependency is calculated; and

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the first plurality of nodes;

accessing a second plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the second
plurality of nodes;

for the second plurality of nodes, generating a lower level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the
second plurality of nodes by determining that said one
or more nodes are depending nodes that correspond to
adepending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the second plurality of nodes;

recording the dependency in a manner associated with
each node in the second plurality of nodes for which a
dependency is calculated; and

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the second plurality of
nodes;

wherein the lower level dependency graph represents
dependency relationships contained within at least
one node of the first plurality of nodes, so that the
lower level dependency graph is overlaid by the
higher level dependency graph; and

wherein at least one of the higher or lower level depen-
dency graphs is generated in two phases, and wherein
during the first phase the generated dependency graph
is first generated prior to runtime and the graph depen-
dencies are calculated based on static analysis, and
during the second phase the generated dependency
graph is updated based on dependencies calculated
using dynamic analysis during a runtime.

2. The computer program product in accordance with claim
1, wherein at least one of the first or second plurality of nodes
comprise a first set of nodes belonging to a first domain, and
a second set of nodes belonging to a second domain, wherein
the act of calculating a dependency, the act of recording the
dependency, and the act of recording a method of dependency
calculation are performed for at least one given node corre-
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sponding to a depending code portion in the first code
domain, and for at least one give node corresponding to a
depending code portion in the second code domain, wherein
the method of dependency calculation for the depending code
portion in the first code domain is different than the method of
dependency calculation for the depending code portion in the
second domain.

3. The computer program product in accordance with claim
2, wherein the first code domain is a static language code
domain, and the second code domain is a dynamic language
code domain.

4. The computer program product in accordance with claim
2, wherein the first code domain is an application domain, and
the second code domain is an operating system domain.

5. The computer program product in accordance with claim
1, wherein at least some of the nodes of said first or second
plurality of nodes comprise functions.

6. The computer program product in accordance with claim
1, wherein at least some of the nodes of said first or second
plurality of nodes comprise resources.

7. The computer program product in accordance with claim
1, wherein the first plurality of nodes contained in the higher
level dependency graph comprise resources and wherein the
second plurality of nodes that are contained in the lower level
dependency graph overlaid by the higher level dependency
graph comprise functions.

8. The computer program product in accordance with claim
1, wherein at least some of the nodes of said first or second
plurality of nodes represent dynamic code portions.

9. The computer program product in accordance with claim
1, wherein the act of calculating the dependency for one or
more nodes of least one of said first or second plurality of
nodes comprises determining one or more properties for said
one or more nodes.

10. The computer program product in accordance with
claim 9, wherein the determined one or more properties for
said one or more nodes also includes a content characteristic
of the depending code portion for said one or more nodes.

11. The computer program product in accordance with
claim 9, wherein the determined one or more properties for
said one or more nodes also includes a predicted consequence
of executing the depending code portion for said one or more
nodes.

12. The computer program product in accordance with
claim 9, wherein the determined one or more properties for
said one or more nodes also includes a language use charac-
teristic of the depending code portion for said one or more
nodes.

13. The computer program product in accordance with
claim 9, wherein the determined one or more properties for
said one or more nodes also includes source characteristics of
the depending code portion for said one or more nodes.

14. The computer program product in accordance with
claim 9, further comprising an act of recording how the deter-
mined one or more properties for said one or more nodes was
calculated.

15. The computer program product in accordance with
claim 14, further comprising an act of recording a confidence
level in how the determined one or more properties for said
one or more nodes was calculated.

16. The computer program product in accordance with
claim 14, further an act of recording a soundness level in how
the determined one or more properties for said one or more
nodes was calculated.
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17. The computer program product in accordance with
claim 9, further comprising an act of recording one or more
conditions of the determined one or more properties for said
one or more nodes.

18. A computer-implemented method for generating a plu-
rality of overlaid dependency graphs for code that includes a
plurality of code portions, the method comprising acts of:

accessing a first plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the first plural-
ity of nodes;

for the first plurality of nodes, generating a higher level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the first
plurality of nodes by determining that said one or
more nodes are depending nodes that correspond to a
depending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the first plurality of nodes;

recording the dependency in a manner associated with
each node in the first plurality of nodes for which a
dependency is calculated; and

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the first plurality of nodes;

accessing a second plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the second
plurality of nodes;

for the second plurality of nodes, generating a lower level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the
second plurality of nodes by determining that said one
or more nodes are depending nodes that correspond to
adepending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the second plurality of nodes;

recording the dependency in a manner associated with
each node in the second plurality of nodes for which a
dependency is calculated;

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the second plurality of
nodes; and

wherein the lower level dependency graph represents

dependency relationships contained within at least one
node of'the first plurality of nodes, so that the lower level
dependency graph is overlaid by the higher level depen-
dency graph; and

wherein at least one of the higher or lower level depen-

dency graphs is generated in two phases, and wherein
during the first phase the generated dependency graph is
first generated prior to runtime and the graph dependen-
cies are calculated based on static analysis, and during
the second phase the generated dependency graph is
updated based on dependencies calculated using
dynamic analysis during a runtime.

19. The computer-implemented method of claim 18
wherein at least one of the first or second plurality of nodes
comprise a first set of nodes belonging to a first domain, and
a second set of nodes belonging to a second domain.

20. The computer-implemented method of claim 19
wherein calculating the dependency for a node uses a differ-
ent calculation method depending on whether a node is in said
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first set nodes belonging to said first domain, or is in said
second set nodes belonging to said second domain.

21. The computer-implemented method of claim 20
wherein said first said nodes in said first domain represent
code portions created from a static language program and said
nodes in said second domain represent code portions created
from a dynamic language program.

22. The computer-implemented method of claim 20
wherein said first said nodes in said first domain represent
code portions of an application program and said nodes in
said second domain represent code portions of an operating
system.

23. The computer-implemented method in accordance
with claim 18, wherein the first plurality of nodes contained in
the higher level dependency graph comprise resources and
wherein the second plurality of nodes that are contained in the
lower level dependency graph overlaid by the higher level
dependency graph comprise functions.

24. A computer-implemented method for generating a plu-
rality of overlaid dependency graphs for code that includes a
plurality of code portions, the method comprising acts of:

accessing a first plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the first plural-
ity of nodes;

for the first plurality of nodes, generating a higher level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the first
plurality of nodes by determining that said one or
more nodes are depending nodes that correspond to a
depending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the first plurality of nodes;

recording the dependency in a manner associated with
each node in the first plurality of nodes for which a
dependency is calculated; and

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the first plurality of nodes;

accessing a second plurality of nodes that each comprises a

data structure corresponding to a code portion of the
plurality of code portions represented by the second
plurality of nodes;

for the second plurality of nodes, generating a lower level

dependency graph by performing the following further

acts:

calculating a dependency for one more nodes of the
second plurality of nodes by determining that said one
or more nodes are depending nodes that correspond to
adepending code portion that depends on an affecting
code portion corresponding to an affecting node that
is included among the second plurality of nodes;

recording the dependency in a manner associated with
each node in the second plurality of nodes for which a
dependency is calculated; and

recording a method of dependency calculation in a man-
ner associated with each calculated dependency for
said one or more nodes of the second plurality of
nodes; and

wherein the lower level dependency graph represents

dependency relationships contained within at least one
node of'the first plurality of nodes, so that the lower level
dependency graph is overlaid by the higher level depen-
dency graph;

wherein at least one of the higher or lower level depen-

dency graphs is generated in two phases, and during the
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first phase the generated dependency graph is first gen-
erated prior to runtime and the graph dependencies are
calculated based on static analysis, and during the sec-
ond phase the generated dependency graph is updated
based on dependencies calculated using dynamic analy- 5
sis during a runtime; and

wherein at least one of the first or second plurality of nodes
comprise a first set of nodes belonging to a first domain,
and a second set of nodes belonging to a second domain,
and calculating the dependency for a node uses a differ- 10
ent calculation method depending on whether a node is
in said first set nodes belonging to said first domain, or is
in said second set of nodes belonging to said second
domain.
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